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 Dedekind’s Mathematical 

Structuralism: From Galois Theory 
to Numbers, Sets, and Functions

José Ferreirós and Erich H. Reck

In this essay, “mathematical structuralism” will be understood mainly as a style 
of work, a methodology for mathematics—​but methodological choices can 
hardly be made without concern for the subject matter. Richard Dedekind’s case 
was no exception to this rule. Thus his mathematical structuralism, which will be 
our main concern, was supplemented by a philosophical conception of mathe-
matical objects.1

What is meant by “structure” in this context? Roughly, a structure is a rela-
tional system, a framework (Fachwerk, truss) of relations between elements—​
where the emphasis is on the relations (and relations of relations, etc.), in the 
sense that the same structure can be instanced by different kinds of elements. 
This rough sketch can be elaborated in a number of different ways, both mathe-
matically and philosophically.

What, then, do we mean by “mathematical structuralism”? It is a style of work 
that takes results in a given branch of mathematics to emerge from the nature 
of relevant structures (exemplified therein), and often typically, from certain 
interrelations between structures of different kinds. A clear and paradigmatic ex-
ample, also for Dedekind, is Galois theory, as we will see.

The essay will proceed as follows:  After some background on Dedekind’s 
main forerunners (§1), we will consider structuralist themes in his approach 
to Galois theory and algebraic number theory (§2). Then we will turn to his 
rethinking of the real numbers (§3) and the natural numbers (§4), within a ge-
neral framework of sets and functions. The essay will end with a brief summary 
and conclusion (§5).

	 1	 The way in which we use “mathematical structuralism” in this essay makes it closely related 
to “methodological structuralism” in Reck and Price (2000); cf. the editorial introduction to this 
volume. We also use “style” in a methodological and epistemological sense, as opposed to a personal, 
national, or merely aesthetic one; cf. Mancosu (2017) for a general discussion.
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1.  Forerunners: Gauss, Dirichlet, and Riemann

As just indicated, a core ingredient of mathematical structuralism is the emphasis 
on relations, as opposed to objects standing in those relations. Henri Poincaré is 
well known for having written in Science and Hypothesis: “Mathematicians do 
not study objects, but the relations between objects; to them it is a matter of indif-
ference if these objects are replaced by others, provided that the relations do not 
change” (Poincaré [1902] 2011, 20). Less well known is the fact that he said this 
as a preparation for explaining Richard Dedekind’s account of the real numbers 
as defined by cuts.2 Yet this point of view has deeper roots, also reaching further 
back than Dedekind.

By 1900, a structuralist approach was natural for many mathematicians, es-
pecially those, like Poincaré, used to working with group theory; similarly for 
Hilbert and mathematicians influenced by his application of the axiomatic 
method to geometry. But already in the 1820s, C.  F. Gauss had argued that 
“mathematics is, in the most general sense, the science of relations” (Gauss 
[1917] 1981, 396).3 This is so since “the mathematician abstracts entirely from 
the nature of the objects and the content of their relations; he is concerned 
solely with counting and comparison of the relations among themselves” (Gauss 
[1831] 1863, 176).4 In another pregnant remark, he wrote that some mathemat-
ical results should be obtained “from notions [i.e., concepts], not from notations” 
(quoted in Dedekind 1895, 54). At the same time, Gauss’s style of doing mathe-
matics was still mostly classical; and while he took care to reformulate some ex-
isting theories in terms of pregnant “notions” (such as the congruence relation, 
≡, in number theory), his writings often seem more calculational than structural.

Around 1850, several German mathematicians insisted that one ought 
to “put thoughts in the place of calculations”, as Dirichlet wrote in his obit-
uary of Jacobi. In other words, they adopted the principle—​later attributed by 
Hermann Minkowski to Dirichlet himself—​of obtaining mathematical results 
with a “minimum of blind calculation, a maximum of clear-​seeing thought” 
(quoted in Stein 1988, 241). And by the end of the 19th century it had become 
customary to speak of a conceptual approach to mathematics in this connec-
tion, as opposed to more calculational approaches.5 Riemann and Dedekind, 

	 2	 See the essay on Poincaré in the present volume for more.
	 3	 Our translation; in the original German: “Die Mathematik ist so im allgemeinsten Sinne die 
Wissenschaft der Verhältnisse [in der] man von allem Inhalt der Verhältnisse abstrahiert” (Gauss 
[1917] 1981, 396).
	 4	 Our translation; in the original German:  “Der Mathematiker abstrahirt gänzlich von der 
Beschaffenheit der Gegenstände und dem Inhalt ihrer Relationen; er hat es bloss mit der Abzählung 
und Vergleichung der Relationen unter sich zu thun” (Gauss 1831, 176).
	 5	 For more on the opposition between a “conceptual” and a more “computational” approach to 
mathematics, cf. Stein (1988), Laugwitz (2008), also Tappenden (2006), Reck (2016).
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two young mathematicians influenced directly by Dirichlet, adopted this prin-
ciple wholeheartedly. They also gave it a particularly abstract twist, or as one 
might say, a philosophical bent.

The initial model in this connection was Dirichlet’s work from the 1830s, 
specifically his contributions to analytic number theory and the theory of trig-
onometric series. Gustav Lejeune Dirichlet is not as well known today as he 
deserves; but his mathematical results were “jewels” (Gauss in an 1845 letter to 
Humboldt)6 that greatly influenced the development of mathematics. Moreover, 
his lectures—​recorded, edited, and published by Dedekind—​were highly influ-
ential and celebrated for their conceptual clarity. When he proved a theorem, one 
would never get lost in a jungle of calculations; instead, one would come away 
with clear insight into the chain of reasons, into the crucial steps that make the 
result possible. In addition, in Dirichlet’s work on Fourier series (1829) he pro-
moted analysis with more rigor than Cauchy. He was able to prove the existence 
of a Fourier-​series representation for any function that is continuous and does 
not oscillate too often. Crucially, this result necessitated a “conceptual approach,” 
since the goal was to establish the existence of a series representation merely 
from some very general traits of functions.

Dirichlet’s application of methods from analysis to pure number theory (1837) 
was also greeted as an impressive novelty. The first example was his theorem that 
there are infinitely many primes of the form a + n·b, with a and b coprime. The 
key point here is that recourse to certain functions in analysis (called L-​series) 
was presented as indispensable; thus a result about finite numbers could only be 
obtained via a detour through the infinitesimal calculus. This stimulated much 
thought about the foundations of mathematics, especially by Kronecker and 
Dedekind. Dirichlet’s own conclusion seems to have been that pure mathematics 
is just arithmetic, i.e., that all of analysis and algebra is nothing but a heavily de-
veloped number theory. Thus, as Dedekind later recalled, in the 1850s he often 
heard Dirichlet say that any result of algebra or analysis, no matter how complex 
or apparently remote, could be reformulated purely as a theorem about the nat-
ural numbers ( [1888a] 1963a, 35). This would, among others, justify the applica-
tion of analytic methods to number theory in a deep way, implying that there is 
nothing “impure” in it.

One more aspect of these contributions by Dirichlet is crucial for our 
purposes. It is his conceptual approach to mathematics that led him to empha-
size the idea of an arbitrary function. Up to then, a “function” was supposed to 
be given explicitly by means of a formula, say polynomial or a concrete infinite 

	 6	 And “one does not weigh jewels on a grocer’s scales” (Biermann 1977, 88).
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series. However, Dirichlet defined a function to be a “law” according to which “to 
any x there corresponds a single finite y”, i.e., an arbitrary correspondence of nu-
merical values (Ferreirós 1999, 148). A function f is then continuous if small var-
iations of x correspond to small variations of f(x). Assuming now that, within an 
interval, the function f is bounded, is continuous except in finitely many points, 
and has finitely many maxima and minima, Dirichlet established that there is a 
Fourier-​series representation for it.

A general way to understand this result is that the notion of function rep-
resentable by a Fourier series, which makes it “calculational”, is tantamount to 
a notion defined more abstractly or conceptually, namely that of a piecewise 
continuous, piecewise monotone function f. This is how Bernhard Riemann 
presented the matter in the introduction to his PhD thesis on the theory of an-
alytic (complex-​valued) functions. As such, Dirichlet’s approach constitutes a 
substantial triumph for the conceptual style of thinking. Riemann then made 
it his programmatic goal to base the theory of complex functions on a similarly 
conceptual starting point, leaving the development of explicit “forms of repre-
sentation” for the very end of the treatment. Here is how he characterized the 
resulting methodological perspective:

Previous methods of treating these functions were always based on an ex-
pression for the function, taken as its definition, which determined its value 
for each value of the argument. Our investigation has shown that, as a con-
sequence of the general characteristics of [analytic] functions of a complex 
variable, in such a definition a part of the determining elements follows 
from the rest; and the extension of those determining elements has been 
reduced to what is strictly necessary. This simplifies their treatment consid-
erably. To give an example, in order to establish the equality of two different 
expressions for the same function, it was necessary to transform one into the 
other, that is, to show that they coincided for each value of the variable mag-
nitude; now it is sufficient to show their coincidence in a far more restricted 
domain.

A theory of such functions in accordance with the foundations established 
here would determine the configuration of the function (that is, its value for 
each value of the argument) independently of forms of determination by means 
of operations; to the general concept of a[n analytic] function of a complex 
magnitude, one would only add the necessary traits for determining the func-
tion, and only afterwards would one move on to the different expressions which 
the function admits. What is common to a species of functions that have been 
expressed in a similar way by means of operations would then be represented 
by means of boundary and discontinuity conditions. (Riemann [1851] 1876, 
§20, 38–​39; our trans.)
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The basis for Riemann’s approach was his definition of an analytic function via 
the Cauchy-​Riemann conditions,7 together with his study of functions by means 
of their associated Riemann surfaces, plus some additional conditions regarding 
points of discontinuity (poles and singularities) and boundary conditions.8

The association of a Riemann surface—​a geometric or, better, topological 
object—​with each analytic function was a very fruitful move too, but one that 
remained somewhat mysterious at the time. In retrospect it can be regarded as 
another step toward mathematical structuralism: the study of one kind of ob-
ject (a complex function) by associating it with an object of a different kind (a 
surface in n-​dimensional space). The price paid by Riemann and his followers 
was foundational worries concerning the nature of these novel objects, which 
required the development of n-​dimensional geometry and topology in order to 
be fully resolved. Finally, applying the same kind of methodology to the study of 
Euclidean space, Riemann subsumed the latter under the much richer and quite 
abstract concept of continuous (and differentiable) manifold, endowed with a cer-
tain metric.9 The idea here was to look for further conditions so as to gradually 
narrow the scope of spaces falling under this general concept, thereby clarifying 
the nature of the assumptions behind Euclidean geometry and its links to other 
recently developed geometries, like the non-​Euclidean one of Lobatchevsky-​
Bolyai, or even more generally, to geometries in spaces of variable curvature (cf. 
Ferreirós 2006).

In Riemann’s work, the conceptual style of doing mathematics became 
very explicit and exclusive. As a consequence, it was criticized by other 
mathematicians—​most importantly by Weierstrass and his Berlin school—​who 
wanted to remain closer to the previous concrete and constructive style of math-
ematics.10 In particular, Weierstrass gave preference to explicit representations 
of functions by means of power series. He argued, among others, that the class 
of differentiable functions had not been characterized completely yet (con-
structively, as one should add); and along such lines, the definition of analytic 
functions given by the Cauchy-​Riemann conditions was not entirely satisfactory. 
For Dedekind, in contrast, the example of Riemann’s style of mathematics be-
came the model to emulate. Thus, when Dedekind makes his most committed 

	 7	 These conditions say, in essence, that a function is analytic or holomorphic if and only if it is dif-
ferentiable (in the complex domain); they state:  ∂
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	 8	 Thus, if the function has discontinuities only in isolated points, and they consist in its “be-
coming infinite with finite order,” then the function “is necessarily algebraic” and vice versa.
	 9	 Cf. Scholz (1999). An n-​dimensional manifold is currently defined as a topological space that, 
locally, behaves like Euclidean space—​but globally it won’t in general be like ℝn. Riemann introduced 
the idea in connection with his reflections about n-​dimensional geometry: they generalized the idea 
of a 2-​dimensional surface to three and more dimensions. The Riemann surfaces are 2-​dimensional 
manifolds, and it may be impossible to embed them in Euclidean space.
	 10	 Cf. Bottazzini and Gray (2013), 320–​324, and Tappenden (2006), 108–​122.
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statements about mathematical method, there is typically a reference to Riemann 
involved, as in the following example:

In these last words, if they are taken in their most general sense, we find the 
expression of a great scientific thought: the decision for the inner in contrast to 
the outer. This contrast also comes up in almost all fields of mathematics. One 
only has to think of function theory, of Riemann’s definition of functions by 
means of characteristic inner properties, from which the outer forms of repre-
sentation arise with necessity. But in the much more limited and simple field of 
ideal theory too, both directions have their validity. (Dedekind 1895, 54–​55)11

Similarly, in the preface to his 1871 book on algebraic number theory, which 
contains his first presentation of ideal theory, Dedekind expressed his “hope 
that the effort to obtain characteristic basic concepts [das Streben nach 
characteristischen Grundbegriffen], which has been crowned with such beau-
tiful success in other areas of mathematics, may not have eluded me completely” 
(Dedekind 1930–​32, 3:396–​397, our trans.). The same outlook is presented in a 
letter to Lipschitz from 1876, again with reference to Riemann.12

Dedekind was exposed to Dirichlet’s and Riemann’s conceptual style of 
thought during his time as privatdozent at the University of Göttingen. This 
proved to be a crucial experience for him. Not only did he later repeat Dirichlet’s 
view that all of algebra and analysis is an extended form of arithmetic, as already 
noted; he also adopted his general notion of function (with consequences we 
explore further subsequently). And whenever it came to expressing his most 
deeply cherished methodological preferences, he wrote that his aim (in algebra, 
in number theory, etc.), like Riemann’s in his theory of functions, was to base his 
results on “characteristic concepts,” while letting concrete “forms of representa-
tion” emerge only as end products.

Actually, in Dedekind’s hands the consistent promotion of such goals led 
even further—​to a form of mathematical structuralism. This Dedekindian move 
brought with it novel set-​ and map-​theoretic methods. But before we turn to 
those, the historical roots of yet another core ingredient of his mathematical 

	 11	 Our translation; in the original: “In diesen letzten Worten liegt, wenn sie im allgemeinsten Sinn 
genommen werden, der Ausspruch eines großen wissenschaftlichen Gedankens, die Entscheidung 
für das Innerliche im Gegensatz zu dem Äußerlichen. Dieser Gegensatz wiederholt sich auch in 
der Mathematik auf fast allen Gebieten; man denke nur an die Funktionentheorie, an Riemanns 
Definition der Funktionen durch innerliche charakteristische Eigenschaften, aus welchen die 
äußerlichen Darstellungsformen mit Notwendigkeit entspringen. Aber auch auf dem bei weitem 
enger begrenzten und einfacheren Gebiet der Idealtheorie kommen beide Richtungen zur Geltung.”
	 12	 From the letter to Litschitz (in our trans.): “My efforts in the theory of numbers are directed . . . —​
though this comparison may sound pretentious—​to attain in this field something similar to what 
Riemann did in the field of function theory” (Dedekind 1930–​32, 3:468, our trans.). For additional 
remarks, compare, e.g., p. 296.
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structuralism should be made explicit, namely:  the systematic exploitation of 
relations, not just between particular mathematical objects, but between whole 
systems of objects as exemplified by Galois theory.

2.  The Algebraic Context: From Galois Theory to Algebraic 
Number Theory

B. L.  van der Waerden, the author of the classic textbook Moderne Algebra 
(1930), stated:  “Galois and Dedekind are those who gave modern algebra its 
structure—​the supporting skeleton of this structure comes from them” (1964, 
vii). Let us consider what he meant by that, including how Galois’ and Dedekind’s 
approaches are related. After that, we will turn to Dedekind’s closely related use 
of Galois theory in his work on algebraic number theory.

After having finished his dissertation under Gauss in 1852, Dedekind 
remained in Göttingen as a privatdozent for six more years. He hesitated about 
what to do next. He also attended several of Dirichlet’s and Riemann’s classes so 
as to broaden and deepen his knowledge of mathematics. In 1855, he found his 
first great field of work: the contributions of Abel and Galois to higher algebra, 
into which he immersed himself, and especially, Galois’s theory (first published, 
posthumously, in 1846 and quite difficult to understand at the time). In 1856–​57 
and 1857–​58, Dedekind gave the first university courses in Germany on Galois 
theory. And it is here that he started to develop “the structural and concep-
tual methodology that will be characteristic of his whole mathematical work” 
(Scharlau 1981, 336, our trans.).

As is well known, algebra had been understood as the general theory of the 
symbolic resolution of equations for centuries; or as Isaac Newton put it, it was 
a kind of “universal arithmetic” that worked with a symbolic or literal calculus 
(in German: Buchstabenrechnung) instead of ordinary arithmetical calculations. 
It was primarily Galois’ work in the early 19th century that led to a novel, much 
more abstract understanding of algebra—​later often called “modern algebra”—​
in which the resolution of equations is relegated to the level of applications, while 
issues involving general theories of groups and fields come to the forefront (see 
Corry 2004, chap. 1). Dedekind played a crucial role in that development.

A central algebraic problem, from the 15th to the 19th century, was to 
find general methods for solving polynomials of any degree by means of 
radicals—​just as the second-​degree equation ax2 + bx + c = 0 is solved by taking  
x = (–​b ± √(b2 –​ 4ac))/2a). Analogous resolutions were found for equations of 
degree 3 and 4 in the 16th century. But around 1800 mathematicians were con-
vinced that a general solution, for all degrees n, is impossible to obtain. Lagrange, 
Ruffini, and Abel provided increasingly fine-​grained analyses of this question, 
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leading to Abel’s proof that equations of degree 5 are in general not solvable (by 
radicals). This line of mathematics emphasized analyzing permutations of the 
roots of the equation at issue, and some expressions that remain invariant under 
such permutations. The very young Galois picked up on that approach, noting 
that all the permutations together form a group—​a very innovative and rather 
abstract concept. This led him to associate with each equation its “Galois group” 
G, and then to investigate subgroups of G with particular attention to what later 
(by Heinrich Weber) would be called “normal” subgroups, which proved to be 
crucial.

Rather quickly, Dedekind obtained remarkable clarity in rethinking Galois’ 
crucial innovation. Here is one passage in which he explains the path he took:

During my first in-​depth study of [the Gaussian theory of] cyclotomy13 during 
the Pentecost holidays of 1855, I had, while well understanding all the details, 
to fight long and hard until I found the crucial principle in irreducibility; I only 
had to direct simple, natural questions at it so as to be led, with necessity, to 
all the details. Through a careful study of the algebraic investigations of Abel 
and, especially, Galois, and by my discovery, in early December of the same 
year, of the most general relation between any two irreducible equations, these 
thoughts were brought to a certain conclusion. Later I employed the method 
I had found also in the two winter courses on cyclotomy and higher algebra 
[given at Göttingen] in 1856–​58. (Dedekind 1930–​32, 3:414–​415)14

Dedekind’s lecture notes from these courses were only published, by Wilfried 
Scharlau, in the 1980s. In Scharlau’s evaluation, his presentation of Galois 
theory—​with its group-​theoretic and field-​theoretic foundations (see below in 
this section)—​was far ahead of his time, even satisfying 20th-​century expec-
tations (Scharlau 1981, 341).15 A similar level would only be achieved again in 

	 13	 Cyclotomy is the study of roots of equations of the form xm = 1, with m a positive integer. These 
roots are points on the unit circle (and thus cut it, “cyclotomy”).
	 14	 Our translation; in the original German:  “Bei meinem ersten gründlichen Studium der 
Kreisteilung in den Pfingstferien 1855 hatte ich, obgleich ich das Einzelne wohl verstand, doch 
lange zu kämpfen, bis ich in der Irreduktibilität das Prinzip erkannte, an welches ich nur einfache, 
naturgemäße Fragen zu richten brauchte, um zu allen Einzelheiten mit Notwendigkeit getrieben 
zu werden. Nachdem diese Gedanken durch eine eingehende Beschäftigung mit den algebraischen 
Untersuchungen von Abel und namentlich von Galois vervollständigt und durch die im Anfang 
Dezember desselben Jahres gelungene Auffindung der allgemeinsten Beziehungen zwischen irgend 
zwei irreduktiblen Gleichungen zu einem gewissen Abschluß gekommen waren, habe ich später in 
meinen beiden Wintervorlesungen über Kreisteilung und höhere Algebra 1956–​1958 die damals 
gewonnene Methode befolgt.”
	 15	 Dedekind’s version of Galois theory was also much superior to contemporary ones, e.g., those 
by Betti or Serret (or Galois himself). It is comparable to the (often celebrated) Jordan (1870), but 
may be again superior to it as a presentation of the theory as a whole.
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Heinrich Weber’s Lehrbuch der Algebra (1895) and in Dedekind’s Supplement XI 
to Dirichlet’s Vorlesungen über Zahlentheorie (1894).16

Two ingredients of Galois theory and Dedekind’s reception of it are of spe-
cial importance for our purposes: the group-​theoretic aspect of Galois’s original 
contribution, developed further by Dedekind; and the introduction of the con-
cept of a field. The latter was only implicit, thus still obscure, in Galois’s writings, 
while Dedekind made it explicit and very central. Concerning the former, in his 
1857–​58 lectures Dedekind presents very clearly a theory of finite groups, which 
he already understands in a general, abstract way. Thus he writes:

The following investigations are based solely on the two fundamental theorems 
just proven,17 together with the fact that the number of substitutions is finite. 
Hence its results will be valid equally for any domain with a finite number of 
elements, things, concepts θ θ θ, , ,...′ ′′  that admits of a composition θθ′ , from θ  
and ′θ , which is defined arbitrarily but so that θθ′  is again a member of that 
domain and this kind of composition obeys the laws expressed in both fun-
damental theorems. In many parts of mathematics, but especially in number 
theory and algebra, we repeatedly find examples of this theory; and the same 
methods of proof are valid there too. (Scharlau 1981, 63, emphasis added)18

The structuralist flavor of this passage is undeniable. It is also not hard to see that 
the two theorems or laws mentioned suffice to axiomatize finite group theory. 
Dedekind then adds the idea of partitioning a group by a normal subgroup, with 
an induced law of composition. All of this is quite remarkable for the 1850s.

Dedekind introduces the notion of a field initially under the label “rational 
domain” (rationales Gebiet). The insight that, when studying an algebraic equa-
tion, one has to pay attention to the domain of numbers in which its coefficients 

	 16	 One of the students attending the courses, Paul Bachmann, remarked about Dedekind: “In his 
calmly flowing, never halting presentation, [he was able to] present the theory with such exceptional 
clarity and simplicity that it was not hard for me to comprehend the material, then still quite foreign 
to me, despite its abstractness—​the concept of group played a big role” (our trans.). In the original 
German: Dedekind was able “in ruhig fliessendem, niemals stockenden Vortrage die Theorien mit 
so ausnehmender Klarheit und Einfachheit [vorzutragen], dass es mir nicht schwer wurde, den mir 
damals noch ganz fremden Gegenstand trotz seiner Abstraktheit—​der Gruppenbegriff spielte eine 
grosse Rolle—​verständnisvoll zu erfassen” (quoted in Landau 1917, 53).
	 17	 The theorems in question state the associativity of the product, and a law of simplification: from 
any two of the three equations ϕ = θ, ϕ′ = ′θ , ϕϕ′ = θθ′, the third follows.
	 18	 In the original German: “Die nun folgenden Untersuchungen beruhen lediglich auf den beiden 
soeben bewiesenen Fundamentalsätzen und darauf, dass die Anzahl der Substitutionen endlich 
ist: Die Resultate derselben werden deshalb genau ebenso für ein Gebiet von einer endlichen Anzahl 
von Elementen, Dingen, Begriffen θ θ θ, , , ...′ ′′  gelten, die eine irgendwie definierte Composition θθ′  
aus θ und ′θ  zulassen, in der Weise, dass θθ′  wieder ein Glied dieses Gebietes ist, and dass diese Art 
der Composition den Gesetzen gehorcht, welche in den beiden Fundamentalsätzen ausgesprochen 
sind. In vielen Theilen der Mathematik, namentlich aber in der Zahlentheorie und Algebra, finden 
sich fortwährend Beispiele zu dieser Theorie; dieselben Methoden der Beweise gelten hier wie dort.”
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live, together with the domain containing its roots (regarded as different from 
the first), was due to Galois. The way in which he introduced them was by con-
sidering rational functions of given quantities supposed to be “known a priori”; 
as he writes: “We shall call rational any quantity which can be expressed as a 
rational function of the coefficients of the equation and of a certain number 
of adjoined quantities arbitrarily agreed upon” (quoted in Toti Rigatelli 1996, 
119). Galois was not more explicit than that—​but it was now relatively easy for 
mathematicians like Dedekind, or Kronecker, to go further and explicitly define 
fields. This can be done in different ways, and it is instructive to compare the 
contrasting styles involved.

We mentioned earlier that Weierstrass wanted to remain close to a “pre-
modern”, concrete, and calculational style of mathematics. The same applies, all 
the more, to Kronecker. He essentially followed Galois in defining a “domain of 
rationality” (Rationalitätsbereich) as the totality of quantities that are rational 
functions of some given quantities ′ ′′ ′′′r r r, , , .... Kronecker was explicit in pre-
ferring this kind of (constructivist) approach, via explicit expressions, to its 
more abstract alternative. Dedekind, in contrast, chose to emphasize the link 
between the notion of a “field” (Körper)—​as he came to call it around 1870—​
and the “simplest arithmetic principles” (Dedekind 1930–​32, 3:400). Thus, he 
defined a field as a set of numbers “closed in itself ” under addition, subtraction, 
multiplication, and division. In doing so, he was directly avoiding any reliance 
on explicit expressions for numbers, since this would “spoil” (verunzieren) the 
presentation.

These two definitions are closely related but not exactly equivalent. 
Kronecker’s “domains of rationality” are always engendered by finitely many 
elements ′ ′′ ′′′r r r, , , ..., while Dedekind’s “rational domains” or “fields” do not 
face such a restriction. As a consequence, the totality of all algebraic numbers 
is a Dedekindian field, but not a Kroneckerian domain of rationality; similarly 
for the field ℝ of all real numbers, which was not accepted by Kronecker at all. 
Moreover, in Dedekind’s treatment of what he called a “finite field”, i.e., a finite 
extension of ℚ, he was not happy with the definition that it is the extension of 
ℚ obtained by adjoining a number α, i.e., the set ℚ [α] of all numbers x0 + x1α + 
x2α

2 + . . . + xn−1α
n−1 with coefficients xi ∈ ℚ. Instead, he preferred to call K a “fi-

nite field” over ℚ when there are only a finite number of subfields ′K  such that  
ℚ ⊆ ′K ⊆K. This is again a conceptual definition. It is also one that directly points 
to an invariant property, as Dedekind was well aware (see Ferreirós 1999, 94). 
And again, explicit equations or “forms of representation” are relegated to being 
auxiliary means.

The contrast between the very different methodologies involved—​Kronecker’s 
constructivist approach and the conceptual/​structural approach of Dedekind—​
became even clearer and more explicit in their divergent ways of dealing with 
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ideal theory (or the “theory of divisors” in Kronecker’s terminology). We will say 
more about the latter soon. But the style of Dedekind’s work is already visible in 
general traits of his approach to Galois theory. Note, in addition, that Dedekind 
focuses on the basic foundations of the whole theory, i.e., on what we would call 
its structural underpinnings. In doing so, he relegated the study of concrete 
solutions of equations to a secondary role, thereby also departing from Galois.19 
What he was mainly concerned about was a general understanding of the exist-
ence and nature of such solutions, not concrete processes of solution.

It remains to highlight one further aspect of the shift from Galois to Dedekind. 
From today’s point of view, the key moves in Galois theory are the following: (i) 
we associate with a given equation its Galois group G, so as to investigate its 
subgroups; (ii) we note that there is a correspondence between the subgroups 
of G and intermediate fields K (intermediate between the base field B, where the 
coefficients of the equation lie, and its extension E, containing all the roots of the 
equation); and (iii) we investigate the conditions for obtaining the splitting field 
E (as a finite extension of B) by studying the properties of the subgroups of G.20 
Galois introduced aspect (i), while (ii) and (iii) were added, and well understood, 
by Dedekind already in the 1850s. They also illustrate an element of mathemat-
ical structuralism we take to be central. Namely, a structuralist methodology 
often involves addressing problems about certain structures by studying their 
interrelations with other structures, perhaps of a different kind; and these structural 
correspondences may require the introduction of novel objects along the way.21 
We would like to highlight this aspect especially, since it is often ignored or at least 
underemphasized by philosophers of mathematics in discussing structuralism.

During the 1860s, a period in which Dedekind moved from Göttingen 
to Zürich for his first salaried position and then back to his hometown of 
Braunschweig as professor, he came to view the concept of a number field as the 
central object of study for algebra. This was consistent with the arithmetizing 
orientation he had encountered in Dirichlet’s work, which guided his research 
on pure mathematics from early on (like that of several other mathematicians 
at the time: Weierstrass, Cantor, etc.). To provide outsiders at least with a rough 
sketch of this conception of algebra, he wrote in 1873 that it deals with the “al-
gebraic [family] relations between numbers” or, better, that it is “the science of 
[family] relations between fields” (Dedekind 1930–​32, 3:409).22 In particular, the 

	 19	 Fragments of Galois’s writings that were oriented more toward this question included details 
not given by Dedekind (e.g., about irreducible equations of prime degree); cf. Scharlau (1981, 107).
	 20	 For a classic presentation of Galois theory along such lines, cf. Artin (1942).
	 21	 Concerning the latter, cf. the introduction of Riemann surfaces. Concerning the former, this 
amounts to studying relevant morphisms and functors (in category-​theoretic language).
	 22	 Our translation; in the original German:  The new algebra deals “von den algebraischen 
Verwandtschaften der Zahlen”; it is “die Wissenschaft von der Verwandtschaft der Körper.”
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properties of equations studied both traditionally and in Galois theory can be 
reconceived as properties of fields and their interrelations (base field, splitting 
field), as previously noted.

As Scharlau remarked (1981, 106), Dedekind was close to publishing the first 
textbook of “modern algebra”, with a careful redaction of his 1856–​58 notes on 
Galois theory. He failed to do so only because he found “an even more inter-
esting” field of work in algebraic number theory, to which he then directed most 
of his energies. The exact date of the redaction at issue is not fully clear, but it 
seems safe to assume that it must have been finished by 1860, if not earlier. In 
any case, the structure of Dedekind’s carefully written notes is distinctive and in-
structive. Its first section contains an investigation of the group-​theoretic results 
needed in Galois-​theoretic algebra; the concept of a (finite) group is isolated and 
investigated separately; and both are given an abstract, fully general presentation.

What is characteristic here, and a constant in Dedekind’s subsequent writings, 
is this: while investigating a given area of mathematics, he was always on the 
lookout for new concepts that might be useful; and when he became convinced 
that a certain new idea was needed, he would isolate it and develop its general 
theory separately. As another example, his 1877 presentation of ideal theory 
begins with a section entitled “Auxiliary Theorems from the Theory of Modules” 
(in which he introduces an antecedent of the more general 20th-​century con-
cept of R-​module, where R is a ring);23 and in all later presentations, the theory 
of modules forms a section of its own, rising to a rather central role in his 1894 
version of ideal theory.

Galois theory remained important for Dedekind’s work in algebraic number 
theory. His first approach to the latter was in terms of a combination of the prin-
ciples of Galois with a theory of “higher congruences” (Dedekind 1930–​32, 
3:397).24 Algebraic numbers are those numbers (real or complex) that are roots 
of a polynomial with rational coefficients, e.g., √–​3 (root of x2 + 3) or 1 5+
(root of x4 –​ 2x2 –​ 4). Now, in certain simple cases it was clear at the time which 
numbers should be regarded as algebraic integers in such contexts, e.g., numbers 
of the form a + b√3, with a, b integers.25 But in general the situation was not so 
clear. Both Dedekind and Kronecker considered this issue; and each of them was 
helped by previous acquaintance with the concept of a field or “rational domain”. 
Each realized that one has to go to the relevant field first, so as then to isolate the 
ring of integers in it (to use current terminology). As a consequence both hit on 
the right definition of an algebraic integer, namely a number (real or complex) 

	 23	 Dedekind’s “modules” are in fact ℤ-​modules, where ℤ is the usual ring of integers.
	 24	 Meant are polynomial congruences modulo a prime; cf. Haubrich (1992, chap. 8).
	 25	 Adjoining √3 to ℚ, we obtain a number-​field, denoted ℚ [√3], that is a finite extension of ℚ. The 
numbers specified are the integers corresponding to that field.
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that is the root of a monic polynomial with integral coefficients ( 1 5+  is an 
example).26

When studying the number theory of certain algebraic integers and building 
on the cases treated by Gauss earlier, Ernst Kummer had found the following 
problem: one often ends up in a situation in which prime integers do not conform 
to our expectations. Dedekind later gives this simple example: In the domain of 
integers ℤ [√–​5], the numbers 2, 3, 1 + √–​5 and 1 –​ √–​5 are indecomposable, 
i.e., they are not the product of two other integers of this kind. However, they do 
not behave like regular primes, for 2 · 3 = (1 + √–​5) · (1 –​ √–​5) = 6, i.e., unique 
decomposability of integers into prime factors fails.27 Kummer then had the bril-
liant idea of introducing “ideal numbers,” objects that do not exist in the given 
domain of integers, but that, once assumed, allow us to recover the principle of 
unique decomposition.

The main issue in algebraic number theory on which Dedekind was working, 
from the 1860s on, was to develop an analysis of all the domains of algebraic 
integers in which the fundamental principle of unique decomposition holds. The 
core question became how to define Kummer’s “ideal numbers” in a way that 
could be applied to any ring of integers and that was rigorous, e.g., by allowing 
us to introduce the product operation on them carefully and explicitly. Around 
1860 he worked with a theory based on “higher congruences,” as already men-
tioned, which led him close to that goal. However, he was not fully satisfied 
with this approach, both since it was not completely general and since it was 
not sufficiently conceptual. The key to his eventual success, 10 years later, was 
the extensionalization of the whole problem, in the sense of its analysis in set-​
theoretic terms. As he put it himself:

I did not arrive at a general theory . . . until I abandoned the old, more formal 
approach completely and replaced it by another, one that departs from the sim-
plest basic conception and fixes the eyes directly on the end. In that approach, 
new creations are not needed any more, like those of Kummer’s ideal number. It 
is entirely sufficient to consider systems of really existing numbers, which I call 
ideals. The power of this notion rests on its extreme simplicity. (Dedekind 1877, 
268, our trans.)28

	 26	 Monic means that the lead coefficient of the polynomial is 1, as happens in the case of x4 –​ 2x2 –​ 4.
	 27	 This refers to the Fundamental Theorem of number theory, due to Gauss, which holds for the 
regular integers (in Z) as well as for the Gaussian integers a + bi (with i = √–​1).
	 28	 Our translation; in the original French: “Je ne suit parvenu à la théorie générale . . . qu’après avoir 
entièrement abandonné l’ancienne marche plus formelle, et l’avoir remplacée par une autre partant 
de la conception fondamentale la plus simple, et fixant le regard immédiatement sur le but. Dans cette 
marche, je n’ai plus besoin d’aucune création nouvelle, comme celle du nombre idéal du Kummer, et il 
suffit complétement de la considération de ce système de nombres réellement existants, que j’appelle 
un idéal. La puissance de ce concept reposant sur son extrême simplicité.”
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That is to say, instead of considering an ideal number p in Kummer’s sense, which 
was only a fiction introduced formally, Dedekind considers the totality of alge-
braic integers in the given ring divisible by p—​which forms an infinite set. This 
set is called an ideal A. In some cases (those of principal ideals), it corresponds to 
a number in the ring that divides all the elements of A, but not in other cases. For 
Dedekind the task now became to find a simple definition of such ideals A; and 
he found that two conditions suffice: (i) sums and differences of elements of A 
are again elements of it; (ii) the products of elements of A with any integers in the 
ring are again in A. His new definition worked fully generally; and he proceeded 
to treat ideals (infinite sets) as if they were simple numbers, operating on them 
as “new arithmetical elements”. Doing so allowed him to define the product of 
ideals; it also made possible the proof of the fundamental theorem for any ring of 
algebraic integers.

We will not go into further details concerning Dedekind’s theory of ideals, 
since it has been analyzed extensively elsewhere.29 But two general observations 
are worth adding in our context. First, the downside of Dedekind’s success with 
his conceptual, set-​theoretic, and structuralist techniques was that others at the 
time were puzzled by his very “abstract” moves. Those moves were natural for 
him, but foreign to most mathematicians of that generation. Consequently, his 
ideal theory was not accepted until the 1890s; and even then, David Hilbert, 
Adolf Hurwitz, and others preferred more formal approaches.30 As late as 1917, 
Edmund Landau would remark that in a “modern lecture” aiming to prove the 
main results, without gaps but briefly, one would prefer Hurwitz’s approach, and 
“Dedekind’s definition of an ideal is not used as basic any more [wird kaum noch 
zu Grunde gelegt]” (Landau 1917, 59).

The merit of Hurwitz’s more formalistic way was that it avoided “the long 
chain of classical concepts and theorems of Dedekind’s, about field permutations 
[automorphisms], modules, modules of rang n, etc.” (Landau 1917, 59). 
Dedekind published a paper on methodology (1895) in which he explained why 
his self-​contained approach was to be preferred to the Hilbert-​Hurwitz way of 
relying on established algebraic theories. But his structuralist methodology, 
exemplified by his contributions to Galois theory and algebraic number theory, 
only came into vogue in the 1920s and later, with works by Emmy Noether, Emil 
Artin, B.  L.  van der Waerden, etc.31 Thus the “modern algebra” of the 1920s 
would take Dedekind’s side—​whence Noether’s well-​known phrase, “It’s all in 
Dedekind already.”

	 29	 Cf. Avigad (2006), earlier Edwards (1980) and Ferreirós (1999, 95–​107).
	 30	 Hurvitz took inspiration from Kronecker’s use of polynomial rings and the “method of 
indeterminates” (Methode der Unbestimmten). Hilbert followed that style in his famous Zahlbericht, 
which made it much less structuralist than Dedekind’s work (see the introduction to Hilbert 
[1897] 1998).
	 31	 Cf. Corry (2004), as well as the essays on Noether, Bourbaki, and Mac Lane in this volume.
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The second general observation is that similar “abstract” moves, which again 
elicited negative reactions, characterize Dedekind’s contributions to more foun-
dational issues, as we will see next. The latter also led him to a kind of logicism.

3.  The Real Numbers: From Arithmetization 
to Dedekindian Logicism

Early in the 20th century, Charles Sanders Peirce called Dedekind, very aptly, 
a “philosophical mathematician.” Or to quote him more fully: “The philosoph-
ical mathematician, Dr. Richard Dedekind, holds mathematics to be a branch of 
logic” (Peirce [1902] 2010, 32). Dedekind’s logicism was developed in the con-
text of reconceptualizing first the real and then the natural numbers. But it is 
illuminating to go back further, to Dedekind’s earliest foundational reflections.

Dedekind’s is a singular case in the history of mathematics, in our judg-
ment, because of the intensity and the success with which he devoted himself to 
reshaping his discipline. Indeed, he worked on a systematic reshaping of all the 
“pure mathematics” of his time—​arithmetic, algebra, analysis—​a fact that has 
not been recognized enough so far.32 In doing so, he set the stage for various 
20th-​century developments—​by being a key precursor of Hilbert, Bourbaki, 
and, above all, “modern algebra”. From the beginning of his career, Dedekind 
was deeply concerned about foundational issues in mathematics as well. In fact, 
foundational and more mainstream issues were intimately intertwined for him.

Dedekind’s interest in foundations is already apparent in his habilitation 
lecture, whose topic was “the introduction of new functions in mathematics” 
(Dedekind 1854). In this lecture, he proposed a genetic viewpoint on the number 
systems, one according to which “the requirement of the unrestricted possibility 
of carrying through the indirect or inverse operations [subtraction, division, 
etc.] leads with necessity to the creation of new classes of numbers” (quoted in 
Ferreirós 1999, 218). However, the set-​theoretic considerations typical of his 
later writings were not present in this discussion yet, which focused on how to 
redefine such operations rigorously and non-​arbitrarily in expanded domains 
(e.g., how to extend the arithmetic operations from the positive and nega-
tive integers to the rational numbers). On the other hand, it is noteworthy that 
Dedekind speaks of new kinds of numbers as our “creations” already in this con-
text. He also believed that the main difficulties in systematizing arithmetic begin 
with the imaginary numbers (Dedekind 1930–​32, 3:434).

	 32	 For the rise of “pure mathematics” in this sense, including Gauss’s role, cf. Ferreirós (2007).
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Interestingly, the latter is an issue to which he would never contribute. The 
reason seems to be that he found a completely satisfactory solution just a few 
years later, while reading W. R. Hamilton.33 Here the ordered pair <a, b> is not 
yet conceived as a set—​but we are moving in that direction. In all likelihood, 
Dedekind was completely satisfied with this reduction of complex arithmetic to 
the arithmetic of the real numbers. And the same move became then a central 
part of his foundational project: to reduce expanded number-​domains, together 
with their operations and laws, to simpler ones. The quintessential example—​
and a key advancement for the foundations of mathematics—​can be found al-
ready in 1858, with Dedekind’s new approach to the real numbers. But its results 
were only published in 1872, in his well-​known essay Stetigkeit und irrationale 
Zahlen.34

As the details of this episode are again well known (or easy to find in the lit-
erature),35 we will only highlight the core ideas. Dedekind starts by assuming 
that the arithmetic of the rational numbers ℚ (an ordered field) has been sat-
isfactorily developed. His goal is to introduce “new arithmetic elements”—​the 
irrationals—​in one step, as a whole system. By only presupposing ℚ, he thus 
reduces the newly created numbers (and their operations) to the rational num-
bers. In particular, Dedekind proves all the fundamental properties of the new 
number domain ℝ based on the operations on and properties of the rationals: his 
1872 essay contains a proof that ℝ is an ordered field with the (topological) pro-
perty of continuity or, in later terminology, line-​completeness. An essential pro-
viso, however, is this: Dedekind needs to regard as unproblematic that we can 
work set-​theoretically with the totality of rational numbers—​the reduction of ℝ 
to ℚ is by set-​theoretic means.

The key in Dedekind’s approach to the real numbers is his concept of a cut: a 
Dedekind-​cut <A1, A2> on ℚ is a pair of (non-​empty) sets A1, A2 such that 
each element of A1 is less than any element of A2, i.e., ∀x ∈ A1 ∀y ∈ A2 (x < y). 
Crucially for him, cuts on the system of rational numbers are a “purely arith-
metical phenomenon” (Dedekind [1888a] 1963, 35–​36, 40). By presupposing as  
given also the totality of all Dedekind-​cuts for the number-​system ℚ, we have 

	 33	 Cf. Ferreirós (1999, 220–​221). Hamilton, in the introduction to Lectures on Quaternions (1853), 
defined the complex numbers a + bi as ordered pairs of real numbers <a, b>, including corresponding 
operations. In manuscripts by Dedekind from the 1860s, perhaps earlier, he defines the integers as 
pairs of natural numbers and the rationals as pairs of integers; cf. Sieg and Schlimm (2005).
	 34	 Dedekind started teaching the calculus at the University of Zürich in 1858. It is in that context 
that he came up with his theory of cuts; cf. Dedekind (1872, 1), and Dedekind (1888a, 36). (In the 
English translation of the latter, 1853 is wrongly given as the relevant year).
	 35	 Besides the original Dedekind (1872), see, e.g., Courant and Robbins (1996, 71–​72), Ebbinghaus 
et al. (1983, 30–​31), or earlier Landau (1930, chap. 3). Dedekind was not the only mathematician 
working on this topic at the time, as mentioned by these writers; but his approach to it was quite 
original.
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essentially introduced the real number system in its entirety—​some cuts will 
correspond to rational numbers, while others will not, e.g., the cut A1 = {x: x2 
< 3}, A2 = {x: x2 > 3}. It is by means of the latter that the irrationals numbers are 
introduced.

Dedekind’s other central contribution in this context is his masterful defini-
tion of continuity: a set of elements S endowed with an ordering < is continuous 
if and only if, given a corresponding cut of its elements into two (non-​empty) 
classes C1 and C2 (as defined previously), there exists one and only one element 
c0 of S that “produces” it. (This definition presupposes implicitly that S is a 
densely ordered set, a point that gave rise to some debate and misunderstandings 
at the time. Also relevant is the fact that Dedekind continuity implies the 
Archimedean property.)36 A straight line in geometry, with an ordering of its 
points left-​and-​right, intuitively has the mentioned property: for any cut, there 
is a point that produces it.37 As Dedekind established explicitly, the system of all 
cuts on ℚ has the property too.

Using the concept of a field isomorphism—​present already in Dirichlet 
(1871), a year before the publication of Stetigkeit und irrationale Zahlen38—​his 
procedure for introducing the system of real numbers can then be described as 
follows: ℝ is defined as a novel number system isomorphic to the system of cuts 
on ℚ. More specifically, we “create new numbers” corresponding to all the cuts, 
including those not produced by rational numbers, and together these form 
the system ℝ. The arithmetic properties of the real numbers, thus introduced, 
are derived rigorously from the arithmetic of the rational numbers; similarly 
for a linear ordering on ℝ, induced by that of ℚ. And ℝ can now be shown to 
be continuous in the precise sense introduced earlier (just like the system of 
cuts on ℚ).

As emphasized already, (infinitary) set theory is functioning as a key back-
ground assumption in Dedekind’s foundational work (also in his work in al-
gebra and algebraic number theory). But how did Dedekind understand its 
status? Consider again his view that cuts are a “purely arithmetic phenomenon.” 
Underlying it is the assumption that set theory is pure logic; and hence, set-​
theoretic constructions on ℚ are pure arithmetic, since we are allowed to em-
ploy all of logic’s resources in it. It is on this basis that the phenomenon of cuts  

	 36	 This says that any positive number r, multiplied by itself n times, will be greater than any other 
number s. The Archimedean property excludes infinitesimal numbers.
	 37	 In the introduction to Dedekind (1888a) he points out, however, that we can conceive of a geo-
metric space that does not have this property, e.g., A3 where A is the set of algebraic numbers. This is 
relevant for evaluating Euclid’s traditional approach to geometry.
	 38	 The label “isomophism” is not Dedekind’s, however. In 1871, he spoke of a field substitution 
(Substitution) instead. The term “isomorphism” was employed early on in crystallography; it was also 
used in Jordan (1870, 56) for groups. Compare http://​jeff560.tripod.com/​i.html.
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appears “in its logical purity” according to him ([1888a] 1963, 40). Notice also, 
once again, that together with the set ℚ of rational numbers Dedekind assumes 
as given the totality of all cuts on ℚ—​a strong assumption equivalent to (an ap-
plication of) Zermelo’s power set axiom.

While controversial today, the idea that the concept of set is purely logical 
was common during Dedekind’s time, e.g., in the tradition of the algebra of 
logic from Boole onward (cf. Ferreirós 1996; 1999, 47–​53). Dedekind adopted 
this view early on, it seems, and it formed a key ingredient in his promotion of 
an early form of logicism. Already in a manuscript drafted in 1872, the same year 
in which his essay on the real numbers was published, he introduced sets in ge-
neral as follows: “A thing is any object of our thought. . . . A system or collection 
[Inbegriff] S of things is determined when for any thing it is possible to judge 
whether it belongs to the system or not” (Dugac 1976, 293, our trans.). And 
in 1887, while preparing the final version of his essay on the natural numbers, 
he noted that the theory of sets, or “systems of elements,” is “logic” (quoted in 
Ferreirós 1999, 225).

Because Dedekind regarded set theory as pure logic, the fact that the theory 
of the real numbers can be reduced to the arithmetic of the rational numbers by 
set-​theoretic means implied for him that the notion of the continuum does not 
have to be seen as grounded in perception or geometric intuition. As he puts it, 
the number concept is “entirely independent of the intuitions of space and time” 
(Dedekind [1888a], 1963, 31); and the creation of the “pure, continuous number 
domain” (ℝ) is not dependent on the notion of magnitude. Instead, its creation 
takes the form of “a finite system of simple steps of thought” (340), and we get a 
“purely logical construction” (Aufbau) of arithmetic—​in the broad sense, from ℕ 
to ℝ, or even to the field ℂ of complex numbers.

Clearly the set-​theoretic reduction of the irrationals to more elementary 
number systems was a crucial step for Dedekind. It also seems that he was the 
first mathematician to consciously avoid reliance on the traditional notion of 
magnitude in this context (cf. Epple 2003). A further reason for this avoidance 
was a requirement of purity. As he wrote: “I demand that arithmetic shall be devel-
oped out of itself ” (Dedekind [1872] 1963, 10) and, more particularly, “without 
any admixture of foreign ideas (such as that of measurable magnitudes)” 
([1888a]‌ 1963 35, trans. modified). Again, Dedekind’s initial goal—​delineated 
already in 1854, clarified while reading Hamilton, and encouraged by Dirichlet’s 
approach—​was to develop the complex number system starting from the natural 
numbers. Other contributors to “arithmetization,” like Weierstrass, shared this 
goal; but unlike them, Dedekind realized this could be done with the help of set 
theory alone. Arithmetic is thus shown to be an outgrowth of the “pure laws of 
thought” (Dedekind [1882] 1963, 31).
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Dedekind’s version of logicism was highly influential during the 1890s—​
much more so than Frege’s—​by affecting authors such as Schröder and Hilbert.39 
The Peirce quotation given at the beginning of this section reflects this state of 
affairs. On the other hand, Dedekind’s talk of “creation” has often been taken to 
throw doubts on the alleged logical nature of his point of view. And it has to be 
conceded that his way of expressing things sometimes runs the risk of conflating 
logic and psychology.40 Was he then guilty of a problematic form of psycholo-
gism (as later criticized by Frege and Husserl)?41 Dedekind was always convinced 
that mathematical objects and concepts are our “creations”—​in his eyes, the pro-
totype objects are numbers, and these are “free creations [freie Schöpfungen] of 
the human mind” ([1888a] 1963, 35; [1872] 1963, 4; also 1854). This was perhaps 
his most persistent philosophical conviction, from 1854 until his death.42 Yet 
such talk about “the human mind” does not have to be understood in a subjec-
tivist sense, as psychologistic thinkers are usually assumed to do. Instead, it can 
be interpreted in a Kantian or neo-​Kantian way; it can thus be seen as a reference 
to our collective “mind” and its products, thus to human cognition and culture.43 
And as we will see in the next section, by 1888 the “creation” of the natural num-
bers consists merely in a step of abstraction from a more concrete “simply infinite 
set,” so that strictly logico-​mathematical results determine every single aspect of 
arithmetic.44

One final observation concerning the real numbers: how Dedekind proceeds 
in this context is closely related to his approach to ideal theory—​methodologically 
the two are of a piece. Indeed, in a French essay of 1877 he explicitly compares 
the two cases (Dedekind 1877, 268–​269). In both, we introduce new “arithmet-
ical elements” in the progressive expansion of the number systems (although 
Dedekind does not “create” new objects corresponding to his set-​theoretic 
ideals). And in both he is guided by the following desiderata: (1) “Arithmetic 
ought to be developed out of itself ” ([1872] 1963, 10, trans. modified), thus 
avoiding any “foreign elements” and “auxiliary means” (magnitudes in the case 
of the reals, polynomials or other specific representations in the case of ideals). 

	 39	 Cf. Ferreirós (2009), later also Reck (2013a).
	 40	 The same happens in Schröder’s logical writings. And traces of it are still visible in Hilbert, e.g., 
when he writes: “We think [wir denken] of three sets [Systeme] of things” (Hilbert 1930, 2); similarly 
in his paper on the real numbers: “We think of a set of things [Wir denken ein System von Dingen]” 
(Hilbert 1900, 181). Notice the use of Dedekind’s terminology in both cases.
	 41	 Cf. Reck (2013b) for related charges, as well as Dedekind’s more general reception.
	 42	 In a letter to Weber of 1888, he wrote that we have the right to claim for ourselves such a creative 
power: “We are of divine lineage and there is no doubt that we possess creative power, not only in ma-
terial things (railways, telegraphs), but quite specially in mental things” (Dedekind 1888b).
	 43	 Cf. the use of Geisteswissenschaften in German, later often translated as “cultural sciences.” 
Many 19th-​century philosophers were intensely concerned about them.
	 44	 Note also that, despite his frequent talk of “construction,” Dedekind’s basic tendency is not at all 
constructivistic (in the technical sense). As his theory of the real numbers shows, it is classical and 
objectivistic, just like Frege’s. More on the underlying set theory in the next section.
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(2) When new elements are introduced, they must be defined in terms of opera-
tions and laws found in the previously given domains (the arithmetic of ℂ in the 
case of ideals).45 (3) The new definitions must be completely general, applying 
“invariantly” to all relevant cases (we should not define some irrationals as roots, 
others as logarithms, etc.; we should not employ different means when deter-
mining ideal factors in various cases, as Kummer had done). (4) The definitions 
must offer a solid foundation for the deductive structure of the whole theory; 
they ought to be not just sound definitions, but the basis for rigorous proofs for 
all relevant theorems.

These four desiderata are closely related to Dedekind’s mathematical struc-
turalism, especially (3) and (4). Moreover, they guide his approach to the natural 
numbers too, as we will see in the next section.

4.  Natural Numbers, Sets, and 
Functions: Logicism Systematized

While working on Galois theory and algebraic number theory, Dedekind distills 
out the core concepts of group and field, so as then to investigate them further 
abstractly and generally (similarly for the concepts of ideal, module, and, in later 
work, lattice). When developing his theory of the real numbers, his approach is 
similarly conceptual. The concept of field is again crucial in this context, but also 
that of continuity, defined in terms of cuts. Importantly, these concepts all in-
volve global properties, which affects entire systems of objects—​they are “struc-
tural” in that sense. We noted earlier that mathematical structuralism typically 
also involves the study of interrelations between such systems. This too is true for 
Dedekind’s approach to the reals. Not only is an isomorphism (for ordered fields) 
between the system of cuts and that of the real numbers involved, at least im-
plicitly;46 his domain extension from ℚ to ℝ also brings with it a corresponding 
homomorphism, as he is well aware. And while more heuristic than formally rig-
orous, his comparison of the reals with the intuitive geometric line involves such 
an interrelation too.

Dedekind’s approach to the natural numbers in his 1888 essay displays the same 
general features; but there are also some noteworthy changes. In his approach 

	 45	 This requirement was particularly critical at the time. Today we usually treat number systems 
axiomatically, but this is done (explicitly or implicitly) within the framework of set theory.
	 46	 Similarly, Dedekind acknowledges an isomorphism between his system of cuts and the reals 
constructed via (equivalence classes of) Cauchy sequences, as Cantor, Méray, etc. proposed. This 
is implicit in his remark (letter to Lipschitz, July 27, 1876) that Cantor and Heine have achieved the 
same goals as himself (reduction to the rational numbers, establishment of the continuity property), 
and that their expositions are different “only externally”. See also Sieg and Schlimm (2017).
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to algebra, algebraic number theory, and analysis, Dedekind always deals with 
subsets of the complex numbers (and related operations and functions). When 
dealing with the natural numbers, in contrast, he starts to consider sets (Systeme) 
of objects in complete generality. As he writes: “It very frequently happens that 
different things . . . can be considered from a common point of view, can be asso-
ciated in the mind, and we say that they form a system ′′S  . Moreover, the concept 
of thing involved here is very inclusive: “I understand by thing every object of 
our thought” (Dedekind [1888a] 1963, 44). The other crucial aspect about sets 
S is that their identity is now understood extensionally—​all that matters is that 
“it is determined with respect to every thing whether it is an element of S or not” 
([1988a] 1963, 45). In a footnote Dedekind adds that a decision procedure is not 
required in this connection, thereby distancing himself from Kronecker. Clearly 
his notion of set is classical, not constructivist.

Parallel to this generalized notion of set, Dedekind introduces a generalized 
notion of function—​or “mapping” (Abbildung). In his own words again: “By a 
mapping Φ of a system S we understand a law according to which to every deter-
minate element s of S there belongs a determinate thing called the image of s and 
denoted Φ( )s ” (Dedekind [1888a] 1963, 50, trans. modified).47 As Dedekind’s 
use of the term “law” in this passage indicates, he is consciously building on 
Dirichlet’s notion of function, while also broadening it even further (from an 
arbitrary functional correlation between sets of numbers to one between any two 
sets of objects). And unlike in axiomatic set theory, he does not reduce functions 
to sets of tuples; for him the notions of set and function are equally basic. Indeed, 
both belong to pure logic, in line with our earlier discussion. At a few points, 
Dedekind even seems to suggest that the notion of function or mapping is the 
really basic one.48

What Dedekind proposes in his 1888 essay is, thus, a general logicist frame-
work in which to reconstruct arithmetic (from ℂ all the way down). However, he 
does not formulate basic laws or axioms for it (as Frege was quick to point out).49 
Instead, he applies it in his reconstruction of the natural number sequence, 
i.e., in reducing the latter to logic. The core concept here is that of a simply in-
finite system (einfach unendliches System) which involves the concept of infinity 
for sets. Famously, a set S is (Dedekind-​)infinite if it can be mapped 1-​1 onto a 
proper subset of itself (Dedekind [188a] 1963, 63). A set N is simply infinite if, 

	 47	 In W. W. Beman’s translation (1963) of Dedekind (1888), Abbildung is rendered as “transforma-
tion,” which seems awkward and is less appropriate than “mapping”.
	 48	 As Dedekind writes, he was led to it by scrutinizing counting and numbers. It constitutes “an 
ability without which no thinking is possible”; and in particular, the entire science of numbers is built 
“upon this unique and in any event absolutely indispensable foundation” (Dedekind 1963, 32). He 
does not write anything as strong about the notion of set; compare Ferreirós (2017).
	 49	 Cf. Reck (2019), also for Dedekind’s relation to Frege more generally.
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in effect, there is an element a in N and a 1-​1 function f on N such that N = {a, 
f(a), f(f(a)), . . .}. More rigorously and formally, Dedekind’s definition of being 
simply infinite involves four conditions, including one that uses the abstract con-
cept of a “chain” to express a minimality condition on the set N, thus guaran-
teeing induction for simply infinite systems. 50 It is not hard to see that these four 
conditions constitute a (more abstract) variant of the Peano axioms—​or better, 
the Dedekind-​Peano axioms.

Dedekind’s reconstruction of the natural numbers is again well known, so that 
we will only survey some highlights here (cf. Reck 2003). Important for him is to 
establish both the existence of a simply infinite system and (what we would call) 
the categoricity of that notion—​the fact that any two simple infinities are isomor-
phic. In a well-​known letter to Keferstein (Dedekind 1890), he clarifies that the 
former is meant to ensure the consistency of the notion of simple infinity. And 
with his categoricity theorem, Dedekind makes explicit an aspect not present yet 
in his earlier treatment of the reals. (Any two continuous ordered fields are iso-
morphic too, but this was not proved in 1872.) In addition, categoricity implies, 
as noted in passing, that exactly the same theorems hold for all simply infinite 
systems: i.e., the Dedekind-​Peano axioms are semantically complete.51 Finally, a 
careful justification for proofs by mathematical induction and for definitions by 
recursion is provided.

There are two controversial parts of Dedekind’s 1888 essay. First, his 
(attempted) proof for the existence of a simply infinite system, which proceeds 
via arguing that an infinite system exists, relies on a universal set, which makes 
it fall prey to Russell’s antinomy.52 Second, Dedekind includes the following ad-
ditional step not mentioned so far: start with a simply infinite system (any of 
them will do, since they are all isomorphic); then “neglect the special character 
of the elements, simply retaining their distinguishability and taking into account 
only the relations to one another” ([1888a] 1963, 68) It is exactly at this point in 
his essay that Dedekind adds: “With reference to this freeing the elements from 
every other content (abstraction) we are justified in calling numbers a free crea-
tion of the human mind” (68, emphasis added). However, it is not obvious how 
to interpret Dedekind’s appeal to “abstraction” and “free creation,” especially in a 
non-​psychologistic way.

	 50	 Modernizing his notation slightly, the four conditions are the following: Consider a set S and a 
subset N of S (possibly equal to S). N is said to be simply infinite if there exists a function f on S and an 
element a in N such that (i) f maps N into itself; (ii) N is the minimal closure of {a} under f in S; (iii) 
a is not in the image of N under f; and (iv) f is a 1-​1 function. (Dedekind uses the notion of “chain” in 
(ii), to capture what it means to be the minimal closure of a set under a function.)
	 51	 Compare Awodey and Reck (2002a), also for a discussion of the history of these notions.
	 52	 Dedekind appeals to “the totality of things that can be objects of my thought” (1888a, 64). This 
may again sound psychologistic, but is meant objectively; cf. Klev (2018).
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In correspondence from the same year, Dedekind makes clear that he takes his 
introduction of “the natural numbers” in his 1888 essay to be exactly parallel to 
his introduction of “the real numbers” in 1872, although the “abstraction” aspect 
has now been made more explicit (cf. Dedekind 1888b). Also, in both cases all 
resulting theorems are determined—​entirely objectively—​by the basic concepts 
involved, in the sense that it is determined what holds for any system of objects 
falling under them.53 Beyond that, there are two interpretations of “Dedekind 
abstraction” that have been proposed in the literature. According to the first, 
a novel simply infinite system is introduced by it, a system isomorphic to but 
not identical with the one we started with and, in addition, determined “purely 
structurally.” According to the second interpretation, such abstraction merely 
amounts to treating the original simple infinity in a certain way, namely by iden-
tifying it pragmatically as “the natural numbers,” with the proviso that any other 
simple infinity could play the same role. 54 The case of the reals, or of continuous 
ordered fields, is parallel.

This essay is not the place to decide which interpretation of “Dedekind ab-
straction” is more defensible.55 But with either one of them, we have arrived at a 
structuralist conception of mathematical objects that complements mathemat-
ical structuralism in the methodological sense; the latter leads to the former in 
Dedekind’s writings, i.e., mathematical structuralism to philosophical struc-
turalism. Turning our attention back to mathematical structuralism, note that, 
besides Dedekind’s continued “conceptualism”, the consideration of structure-​
preserving mappings (morphisms) between different systems of objects has be-
come central in his foundational writings. This is most explicit in the categoricity 
theorem from his 1888 essay, which involves isomorphisms between any 
two simply infinite systems. A more implicit case is the treatment of recursive 
definitions and proofs by induction in it, which relates the natural number se-
quence to other recursively generated systems in terms of corresponding 
homomorphisms.56

By 1888, Dedekind has come to rely on a general framework of sets and 
functions for his mathematical structuralism. But as already noted, he does not 
formulate basic laws or axioms for it. There are some indications that implicitly 

	 53	 As Dedekind writes: “The relations or laws, which are derived entirely from the conditions α, β, 
γ, δ in (71) are therefore always the same in all ordered simply infinite systems” (1963, 68). (For those 
conditions, see note 50.)
	 54	 The first interpretation amounts to reading Dedekind as a “non-​eliminative structuralist,” while 
the second amounts to reading him in an “eliminative” way; cf. Reck and Price (2000).
	 55	 A decision based on Dedekind (1888a) alone may be impossible; both sides can appeal to evi-
dence in it. For the first reading, cf. Reck (2003); for the second, Sieg and Morris (2018). Dedekind 
may also have moved from one position to the other, i.e., changed his mind in this connection.
	 56	 From the perspective of category theory, Dedekind’s procedure points toward thinking of N in 
terms of a corresponding universal mapping property; cf. McLarty (1993).
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he works with a naive comprehension principle for sets.57 Because of Russell’s 
and related antinomies, this is no longer attractive to us. What one can still 
do is to carefully reconstruct which more restricted set-​formation principles 
Dedekind actually needs for his overall project. This seems, in fact, to be ex-
actly what Zermelo did while formulating his axiomatization for set theory in 
1908. In retrospect, what Dedekind needs is the following: the power set axiom 
and an axiom of infinity;58 principles for set-​theoretic unions, intersections, or 
subsets more generally (an axiom of separation); some way of introducing or 
reconstructing n-​tuples; and less obviously, the axiom of choice and the axiom of 
replacement (missed by Zermelo originally).

As Dedekind’s work brings out the importance of all these axioms, it makes 
sense that Zermelo, who knew the history well, considered modern set theory 
to have been “created by Cantor and Dedekind” (quoted in Ferreirós 1999, xii 
and 320). Today set theory is no longer considered to be “logic,” however, among 
others because in its axiomatic form it is a specific mathematical theory.

5.  Concluding Remarks

Our main concern in this essay has been Dedekind’s mathematical structur-
alism, understood as a methodology or a style of doing mathematics. We can 
now summarize our main results briefly. From his teachers and mentors in 
Göttingen, especially Dirichlet and Riemann, Dedekind inherited a conceptual 
way of doing mathematics. This involves replacing complicated calculations by 
more transparent deductions from basic concepts. Both Dedekind’s mainstream 
work in mathematics, such as his celebrated ideal theory, and his more founda-
tional writings reflect that influence. Thus, he distilled out as central the concepts 
of group, field, continuity, infinity, and simple infinity. A related and constant as-
pect in his work is the attempt to characterize whole systems of objects through 
global properties.

From early on, Dedekind also pursued the program of the arithmetization of 
analysis—​in the broad sense, from the complex numbers all the way down to 
the naturals. A decisive triumph came in 1858, with Dedekind’s reductive treat-
ment of the real numbers. From the 1870s on, he added a reduction of the nat-
ural numbers to a general theory of sets and mappings. This led to an early form 
of logicism, since he conceived of set theory as a central part of logic; i.e., the 

	 57	 Or equivalently, he might work with a “dichotomy conception” where any division of the uni-
verse of objects into two parts creates corresponding sets; cf. Ferreirós (2017).
	 58	 Zermelo’s axiom of infinity was modeled on Dedekind’s controversial “proof ”; he even called it 
“Dedekind’s axiom.” Its standard descendant, modified by von Neumann, still shows this origin.
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reduction was ultimately to “the laws of thought.” Moreover, in Dedekind’s works 
there is a resolute reliance on the actual infinite—​cuts, ideals, etc. are infinite sets. 
And while problematic in some respects, his attempt to execute a logicist pro-
gram had a decisive effect on the rise of axiomatic set theory in the 20th century.

Its conceptualist and set-​theoretic aspects are central ingredients in 
Dedekind’s mathematical structuralism. But we emphasized another character-
istic aspect that goes beyond both. This is the method of studying systems or 
structures with respect to their interrelations with other kinds of structures, 
and in particular, corresponding morphisms. A historically significant example, 
particularly for Dedekind, was Galois theory. As reconceived by him, in Galois 
theory we associate equations with certain field extensions, and we then study 
how to obtain those extensions in terms of the associated Galois group (intro-
duced as a group of morphisms from the field to itself, i.e., automorphisms). 
Dedekind’s more foundational works provide further examples, especially in 
terms of isomorphisms, such as his celebrated theorem that the Dedekind-​Peano 
axioms are categorical, but also various homomorphism results involving the nat-
ural and real numbers.

As we saw, Dedekind connected his mathematical or methodological struc-
turalism with a structuralist conception of mathematical objects, i.e., a form of 
philosophical structuralism (and the latter too involves categoricity results cru-
cially). Central here was Dedekind’s long-​held view that mathematical objects, 
and paradigmatically numbers, are “free creations of the human mind,” obtained 
by a kind of “abstraction” from more concrete systems of objects. With respect 
to Dedekind’s logicism and his philosophical structuralism we acknowledged 
some controversial features. More can, and should, be said about both of them 
in the end. But we would like to conclude this essay with an observation of a 
different kind.

Dedekind’s methodology was not static—​it kept evolving. In fact, starting in 
the 1880s one can discern a subtle shift in his works, from focusing primarily 
on sets and set-​theoretic constructions to taking functions and map-​theoretic 
constructions as more fundamental (cf. Ferreirós 2017). However, there are only 
some hints to this effect in his writings, and officially both sets and functions 
remain basic. In addition, it was the aspects of his mathematical structuralism 
that we highlighted earlier with which he was most influential—​on figures from 
Hilbert and Noether to Zermelo and Bourbaki. Finally, these aspects remain 
largely intact if one pushes mathematics further in a morphism-​theoretic direc-
tion, as evidenced by 20th-​century category theory and related developments. 59

	 59	 Cf. Corry (2004), Awodey and Reck (2002b), and the essay on Mac Lane in this volume.
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